Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; : e2401005, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38663447

ABSTRACT

In chronic wound management, efficacious handling of exudate and bacterial infections stands as a paramount challenge. Here a novel biomimetic fabric, inspired by the natural transpiration mechanisms in plants, is introduced. Uniquely, the fabric combines a commercial polyethylene terephthalate (PET) fabric with asymmetrically grown 1D rutile titanium dioxide (TiO2) micro/nanostructures, emulating critical plant features: hierarchically porous networks and hydrophilic water conduction channels. This structure endows the fabric with exceptional antigravity wicking-evaporation performance, evidenced by a 780% one-way transport capability and a 0.75 g h-1 water evaporation rate, which significantly surpasses that of conventional moisture-wicking textiles. Moreover, the incorporated 1D rutile TiO2 micro/nanostructures present solar-light induced antibacterial activity, crucial for disrupting and eradicating wound biofilms. The biomimetic transpiration fabric is employed to drain exudate and eradicate biofilms in Staphylococcus aureus (S. aureus)-infected wounds, demonstrating a much faster infection eradication capability compared to clinically common ciprofloxacin irrigation. These findings illuminate the path for developing high-performance, textile-based wound dressings, offering efficient clinical platforms to combat biofilms associated with chronic wounds.

2.
Se Pu ; 42(1): 52-63, 2024 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-38197206

ABSTRACT

Pesticide residues in food and their hazardous effects have attracted much attention given the increased and widespread use of pesticides. The long-term consumption of food containing pesticide residues is an important pathway for the gradual accumulation of pesticides in the human body. Urine is often monitored as a biological sample for low-dose exposure to pesticides, and urine collection is a relatively convenient sampling technique in general population research. In order to effectively monitor residual levels of multiple pesticides in human urine and provide an important technological approach for health risk assessment, a rapid screening and confirmatory detection method for 118 pesticides in urine was established using QuEChERS method as a pretreatment combined with ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-MS/MS). The 118 pesticides analyzed included organophosphorus, carbamate, neonicotinoid, and strobilurin fungicides and other widely used pesticides. Following systematic optimization of the pretreatment process, LC separation conditions, and MS/MS parameters, 118 pesticides were extracted from urine samples and analyzed within 2 h. In brief, the target analytes in 5 mL urine samples were extracted with 10 mL of acetonitrile and added with 5 g of anhydrous MgSO4 and 1 g of NaCl as water-removal and salting-out agents, respectively. After centrifugation, 6 mL of the supernatant was cleaned using the QuEChERS method with 300 mg of C18, 300 mg of primary secondary amine (PSA) and 900 mg of anhydrous MgSO4 as the purification adsorbent. After nitrogen blowing and solubilization, the 118 target analytes were separated on a ZORBAX Eclipse Plus C18 analytical chromatographic column (100 mm×2.1 mm, 1.8 µm) with gradient elution using (A) 0.01% formic acid aqueous solution (containing 2 mmol/L ammonium formate) and (B) 0.01% formic acid methanol solution (containing 2 mmol/L ammonium formate) as mobile phases. The gradient elution program was as follows: 0-0.5 min, 5%B; 0.5-1.5 min, 5%B-20%B; 1.5-2.5 min, 20%B-50%B; 2.5-8.0 min, 50%B-80%B; 8.0-9.0 min, 80%B-98%B; 9.0-11.0 min, 98%B; 11.0-11.5 min, 98%B-5%B; 11.5-15.0 min, 5%B. The analytes were then determined by UHPLC-MS/MS with positive/negative ion switching in dynamic multiple-reaction monitoring mode and quantified using the external standard method. The results indicated that the proposed method can determine 118 pesticides in urine simultaneously and rapidly. The limits of detection and limits of quantification were 0.10 and 0.50 µg/L, respectively, and the matrix effects were less than 20%for all targeted compounds. The recoveries of the 118 pesticides in urine were between 70.2% and 104% at three spiked levels of 0.50, 1.00, and 5.00 µg/L, and the relative standard deviations ranged from 2.8% to 9.3%. The method was applied to 10 actual urine samples, and the results revealed the presence of six pesticides, including thiamethoxam, clothianidin, acetamiprid, dinotefuran, isoproturon, and dimethomorph, with contents ranging from

Subject(s)
Pesticide Residues , Pesticides , Humans , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Thiamethoxam
3.
Foods ; 11(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36230226

ABSTRACT

At present, the apple grading system usually conveys apples by a belt or rollers. This usually leads to low hardness or expensive fruits being bruised, resulting in economic losses. In order to realize real-time detection and classification of high-quality apples, separate fruit trays were designed to convey apples and used to prevent apples from being bruised during image acquisition. A semantic segmentation method based on the BiSeNet V2 deep learning network was proposed to segment the defective parts of defective apples. BiSeNet V2 for apple defect detection obtained a slightly better result in MPA with a value of 99.66%, which was 0.14 and 0.19 percentage points higher than DAnet and Unet, respectively. A model pruning method was used to optimize the structure of the YOLO V4 network. The detection accuracy of defect regions in apple images was further improved by the pruned YOLO V4 network. Then, a surface mapping method between the defect area in apple images and the actual defect area was proposed to accurately calculate the defect area. Finally, apples on separate fruit trays were sorted according to the number and area of defects in the apple images. The experimental results showed that the average accuracy of apple classification was 92.42%, and the F1 score was 94.31. In commercial separate fruit tray grading and sorting machines, it has great application potential.

4.
J Chromatogr A ; 1651: 462321, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34144398

ABSTRACT

A high-efficiency approach for the synthesis of molecularly imprinted polymers has been developed and further for the solid-phase extraction of sulfonylurea herbicides in food samples. Molecular simulation approach combined chemometric selected metsulfuron-methyl (MSM) and 2-trifluoromethyl acrylic acid (TFMAA) as the template and the monomer to synthesize the molecularly imprinted polymers (MIPs). Experimental validation confirmed that the MSM-imprinted polymers showed a higher selectivity and affinity to sulfonylurea herbicides. The optimized molecularly imprinted solid-phase extraction (MISPE) conditions, including loading, washing, and eluting conditions, were established. The developed MISPE technology combined HPLC-MSMS was successfully used for the determination of sulfonylurea herbicides in foods. Compared with commercial SPE columns, MISPE showed high affinity, excellent selectivity and low matrix effect. The recoveries of sulfonylurea herbicides spiked in four matrices were between 86.4% and 100.2%, with the relative standard deviations (RSD) in the range of 0.9%-10.5%.


Subject(s)
Chemistry Techniques, Analytical/methods , Herbicides/isolation & purification , Molecularly Imprinted Polymers/chemical synthesis , Sulfonylurea Compounds/isolation & purification , Arylsulfonates/chemistry , Chromatography, High Pressure Liquid , Herbicides/analysis , Humans , Solid Phase Extraction , Sulfonylurea Compounds/analysis , Tandem Mass Spectrometry
5.
ACS Appl Mater Interfaces ; 13(23): 27557-27566, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34100290

ABSTRACT

The development of three-dimensional (3D) micro-/nanostructures with multiscale hierarchy offers new potential for the improvement of the pristine textile properties. In this work, a polyester fabric coated with 3D hierarchically structured rutile TiO2 nanowires (THNWP) was fabricated by a facile hydrothermal strategy. The THNWP samples exhibit markedly improved photocatalytic activities and antibacterial properties owing to their 3D hierarchical architecture constructed by one-dimensional nanowire structures, good crystallinity, excellent light-harvesting capability, and fast electron-transfer rate. Furthermore, the unique 3D hierarchical nanostructures also combine with the monofilament to produce ternary-scale hierarchy, which endows the fabric surface with outstanding superamphiphobicity after further facile fluorination treatment. The supportive air-pockets trapped within the unique ternary-scale architectures are proved to be the crucial factor in the achievement of high liquid repellency, and the highest performing superamphiphobic surface is capable of repelling liquids down to a minimal surface tension of 23.4 mN m-1. We envision that our findings may possess great potential in the bottom-up design of high-performance textiles.

6.
Viral Immunol ; 34(4): 213-217, 2021 05.
Article in English | MEDLINE | ID: mdl-33124969

ABSTRACT

Much uncertainty still exists about the viral etiology of myasthenia gravis (MG). To address this, we explored the relationship between human parvovirus B19 (PVB19) infection and MG by investigating the presence of PVB19-specific antibodies in serum. A total of 131 patients with MG (including 47 with thymoma-associated MG, 14 with hyperplasia-associated MG, and 70 with unknown thymic lesions) and 172 healthy volunteers were enrolled in this study. Enzyme linked immunosorbent assay was conducted to detect virus-specific antibodies in cell-free serum. The data were analyzed using Pearson chi-square (χ2) and Fisher's exact tests. In the 131 patients with MG, there was no significant difference between male (53.41 ± 14.65 years) and female (50.19 ± 15.28 years) groups regarding mean age (p > 0.05). Among all MG subgroups, the largest age group comprised participants aged 30-60 years. We found that the frequency of detecting immunoglobulin G (IgG) antibodies against PVB19 VP1 and VP2 was significantly higher among patients with MG (68.70%) than in healthy controls (41.86%) (p < 0.001). In particular, the positive rate for anti-PVB19 IgG in patients with thymoma-associated MG (35/47, 74.47%) was significantly higher than that in healthy participants (72/172, 41.86%; p < 0.001). The findings of this study indicate that PVB19 infection may play a role in the etiopathogenesis of MG, particularly in patients with thymoma-associated MG. The study protocol was registered at ClinicalTrials.gov with the identifier ChiCTR-1900023338.


Subject(s)
Myasthenia Gravis , Parvoviridae Infections , Parvovirus B19, Human , Thymoma , Thymus Neoplasms , Adult , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G , Immunoglobulin M , Male , Middle Aged , Myasthenia Gravis/complications , Parvoviridae Infections/complications , Thymoma/complications , Thymus Neoplasms/complications
7.
Front Plant Sci ; 11: 575304, 2020.
Article in English | MEDLINE | ID: mdl-33329635

ABSTRACT

Cytokinins are crucial signaling molecules that regulate plant growth and development. OsCKX2 irreversibly degrades nucleobase cytokinins by encoding cytokinin oxidase/dehydrogenase to control grain production in rice. In this study, OsCKX2 was specifically overexpressed in roots using RCc3 promoter to investigate the effects of root-source cytokinins on the growth of rice. OsCKX2 overexpressed (OE) rice showed retarded growth with lower cytokinin levels and biomass production. Shoot-specific transcriptome analysis between OsCKX2 OE rice and wild type (WT) revealed differentially expressed genes (DEGs) associated with cell division, cell wall structure, phytohormone signaling, and assimilation and catabolism. Metabolome analysis indicated that a majority of differential primary metabolites, such as amino acids and organic acids, increased, while lipids decreased in OsCKX2 OE rice. Integration of transcriptomic and metabolomic data showed that several DEGs and differential metabolites were related to glycolysis and tricarboxylic acid cycle (TCA). To conclude, reduced cytokinin levels via root-specific overexpression of OsCKX2 resulted in developmental defects, which confirmed the importance of root-source cytokinins in plant growth and morphogenesis.

8.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 36(1): 75-80, 2020 Jan.
Article in Chinese | MEDLINE | ID: mdl-32314727

ABSTRACT

Human parvovirus B19 (PVB19) is a small single strand DNA virus distributed throughout the world, with its encoded products being three known proteins. There is conclusive evidence that PVB19 infection is a crucial inducement of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Hashimoto's thyroiditis (HT), myasthenia gravis (MG) and other autoimmune diseases (AIDs). Recent studies have confirmed that anti-B19-VP1u-IgG antibody is able to increase the activity of cytokines such as interleukin 1 (IL-1), tumor necrosis factor α (TNF-α), matrix metalloproteinase-9 (MMP9); PVB19 protein NS 1 and VP1u are capable of inducing the expression of IL-6; PVB19 can induce the production of Th17 cell-related cytokines, resulting in the decrease of IFN-gamma levels and the increase of IL-4 levels in plasma. In this paper, the structure of PVB19, the mechanism of human infection and the relationship between PVB19 and AIDs are summarized.


Subject(s)
Autoimmune Diseases/virology , Parvovirus B19, Human/pathogenicity , Arthritis, Rheumatoid/virology , Cytokines/immunology , Hashimoto Disease/virology , Humans , Lupus Erythematosus, Systemic/virology , Myasthenia Gravis/virology
9.
Chemistry ; 26(23): 5257-5263, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-31971640

ABSTRACT

Recently, it has become very important to develop cost-effective anode materials for the large-scale use of lithium-ion batteries (LIBs). Polyoxometalates (POMs) have been considered as one of the most promising alternatives for LIB electrodes owing to their reversible multi-electron-transfer capacity. Herein, Keggin-type [PMo12 O40 ]3- (donated as PMo12 ) clusters are anchored onto a 3D microporous carbon framework derived from ZIF-8 through electrostatic interactions. The PMo12 clusters can be immobilized steadily and uniformly on the carbon framework, which provides enhanced electrical conductivity and high stability. Compared with PMo12 itself, the as-prepared novel 3D Carbon-PMo12 composite displays a significantly improved Li-ion storage performance as an LIB anode, with excellent reversible specific capacity and rate capacity, as well as high cycling performance (discharge capacity of 985 mA h g-1 after 200 cycles), which are superior to other POM-based anode materials reported so far. The high performance of the Carbon-PMo12 composite can be attributed to the 3D conductive network with fast electron transport, high ratio of pseudocapacitive contribution, and evenly distributed PMo12 clusters with reversible 24-electron transfer capacity. This work offers a facile way to explore novel LIB anodes consisting of electroactive molecule clusters.

10.
Front Plant Sci ; 11: 641990, 2020.
Article in English | MEDLINE | ID: mdl-33542727

ABSTRACT

[This corrects the article DOI: 10.3389/fpls.2020.575304.].

11.
Chemistry ; 26(18): 4150-4156, 2020 Mar 26.
Article in English | MEDLINE | ID: mdl-31750955

ABSTRACT

Molybdenum disulfide (MoS2 ) is one of the most promising alternatives to the Pt-based electrocatalysts for the hydrogen evolution reaction (HER). However, its performance is currently limited by insufficient active edge sites and poor electron transport. Hence, enormous efforts have been devoted to constructing more active edge sites and improving conductivity to obtain enhanced electrocatalytic performance. Herein, the 3D carbon foam (denoted as CF) supported edge-rich N-doped MoS2 nanoflakes were successfully fabricated by using the commercially available polyurethane foam (PU) as the 3D substrate and PMo12 O40 3- clusters (denoted as PMo12 ) as the Mo source through redox polymerization, followed by sulfurization. Owing to the uniform distribution of nanoscale Mo sources and 3D carbon foam substrate, the as-prepared MoS2 -CF composite possessed well-exposed active edge sites and enhanced electrical conductivity. Systematic investigation demonstrated that the MoS2 -CF composite showed high HER performance with a low overpotential of 92 mV in 1.0 m KOH and 155 mV in 0.5 m H2 SO4 at a current density of 10 mA cm-2 . This work offers a new pathway for the rational design of MoS2 -based HER electrocatalysts.

12.
Chemistry ; 25(68): 15548-15554, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31536174

ABSTRACT

Polyoxometalates (POMs) are promising catalysts for the electrochemical hydrogen production from water owing to their high intrinsic catalytic activity and chemical tunability. However, poor electrical conductivity and easy detachment of the POMs from the electrode cause significant challenges under operating condition. Herein, a simple one-step hydrothermal method is reported to synthesize a series of Dexter-Silverton POM/Ni foam composites (denoted as NiM-POM/Ni; M=Co, Zn, Mn), in which the stable linkage between the POM catalysts and the Ni foam electrodes lead to high activity for the hydrogen evolution reaction (HER). Among them, the highest HER performance can be observed in the NiCo-POM/Ni, featuring an overpotential of 64 mV (at 10 mA cm-2 , vs. reversible hydrogen electrode), and a Tafel slope of 75 mV dec-1 in 1.0 m aqueous KOH. Moreover, the NiCo-POM/Ni catalyst showed a high faradaic efficiency ≈97 % for HER. Post-catalytic of NiCo-POM/Ni analyses showed virtually no mechanical or chemical degradation. The findings propose a facile and inexpensive method to design stable and effective POM-based catalysts for HER in alkaline water electrolysis.

13.
Zhongguo Zhong Yao Za Zhi ; 35(23): 3093-6, 2010 Dec.
Article in Chinese | MEDLINE | ID: mdl-21355225

ABSTRACT

OBJECTIVE: The content of vindoline, catharanthine and vinblastine in the root, stem, leaf, flower and fruit of Catharanthus roseus at various developmental stages were determined, and the biomass allocation was also determined to find the best harvest time. METHOD: The content of vindoline, catharanthine and vinblastine in the root, stem, leaf, flower and fruit of C. roseus were determined by HPLC. RESULT: The content of these alkaloids were influenced by season and it varied in the different tissues of the plant. The content of vindoline and catharanthine in the leaves were the highest, and there was no vindoline detected in the root, but the content of vinblastine in the flower was the highest; the content of vindoline and catharanthine reached the maximum between the August and September, and the content of vinblastine reached the highest after the September. The biomass was the highest in the initial stage of September. CONCLUSION: The best harvest time was in the initial stage of September.


Subject(s)
Catharanthus/chemistry , Plant Extracts/analysis , Vinblastine/analogs & derivatives , Vinblastine/analysis , Vinca Alkaloids/analysis , Catharanthus/growth & development , Catharanthus/metabolism , China , Chromatography, High Pressure Liquid , Flowers/chemistry , Flowers/growth & development , Flowers/metabolism , Plant Extracts/metabolism , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/chemistry , Plant Roots/growth & development , Plant Roots/metabolism , Seasons , Vinblastine/metabolism , Vinca Alkaloids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...